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Abstract— This paper investigates the effect of the number of environment features on a cooperative approach of simultaneous 
localization and mapping (SLAM). The tested cooperative SLAM approach is the Extended Observation-Cooperative SLAM (EO-CSLAM) 
algorithm which depends on additional, indirect correlated observations of the features (landmarks). The performance gain due to 
additional correlated observations means that additional features will have similar positive effect. However, as EO-CSLAM adopts extended 
Kalman filter-simultaneous localization and mapping (EKF-SLAM) solution, the number of environment features will have an important role 
in the computational burden. Simulation results show that the performance gain provided by EO-CSLAM is more obvious in tha less 
features cases. 

Index Terms— Autonomous Navigation, Cooperative SLAM, Unmanned Surface Vehicles.   

——————————      —————————— 

1 INTRODUCTION
hatever the task of an autonomous vehicle is, the accurate 
localization has an essential role for efficient achievement 

and accurate results. For instance, in underwater environmental 
modelling, accurate navigation is very important to provide 
sensors with referential transformations matrix and high-accuracy 
pose [1]. On the other hand, while GPS can be used for 
localization, its data can be inaccurate or inaccessible due to 
many possible reasons, such as atmospheric changes, noisy 
environments, multi-path errors, deliberate jamming, spoofing or 
confined areas where observing sufficient number of satellites 
can be difficult [2]. To solve these problems, simultaneous 
localization and mapping (SLAM) framework can be a proper 
alternative or incorporated to GPS [3]. Moreover, exploiting 
SLAM in a cooperative approach can provide more improvement 
in localization accuracy of USVs, in addition to the mentioned 
advantages of cooperative manners. 

For the cooperative SLAM implementation with USVs, a 
Multi-USV-based CSLAM approach has been proposed in [5] 
using laser sensors. The research adopted the Constrained 
Local Submap Filter (CLSF) approach, which had been 
presented in [6] and [7] to improve computational efficiency 
and data association. In CLSF approach, local submaps are 
fused periodically into a single global map; the common    
(duplicated) feature estimates are processed by a constraining 
operation as a weighted projection to produce a recovered 
estimate for each common feature. Therefore, in theCLSF-
based cooperative SLAM, the performance gain (versus the 
single-USV case) depends only on the common features be-

tween the local submaps, while the non-common features do 
not contribute to the improvement due to the uncorrelated 
nature of local submaps. 

Consequently, in the case of absence of common features in 
the overlapped areas, which isa possible situation in large-
scale environments, there will not be improvement in localiza-
tion accuracy and mappingperformance, and CLSF-based 
CSLAM will act the same level of accuracy of Mono-SLAM or 
lower. 

In our previous work [8], the Extended Observation-
Cooperative SLAM (EO-CSLAM) has been presented, this 
approach allows vehicles to improve localization accuracy and 
mapping performance even with no common features, profit-
ing from all observed features, which makes it a proper meth-
od for USVs using radar sensors. 

In this paper more investigation on this algorithm is pre-
sented showing the effect of environment features number on 
the resulting performance gain and computational complexity. 

This paper is organized as follows: Section 2 provides the 
general framework for the EO-CSLAM approach and its 
formulation, while section 3 evaluates (using simulations) the 
effect of features number on the performance gain and compu-
tational burden. Finally, conclusions are presented in 
section 4. 

2 EO-CSLAM ALGORITHM 
In the general framework for the EO-CSLAM algorithm, it is 
assumed that a team of vehicles perform a collective task in an 
unknown environment. While moving through the 
environment, the vehicles use their sensors to obtain relative 
observations (measurements) of the features and vehicles 
within their fields of view (FOV). Assuming that the 
collaborating vehicles have the ability to share required 
information, each vehicle shares its observations and control 
signals with the collaborating vehicles. 

For the marine environments case considered in this paper, 
the collaborating vehicles are a team of USVs with radar 
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sensors. To demonstrate the algorithm, let’s consider the case 
of two USVs denoted a  and b  as shown pictorially in Fig.1 
involving only three features for simplifying. The features on 
sea surface can be artificial and/or naturally occurring 
elements [4], [5].Considering the surface planar motion, the 
start points of vehicles are firstly stored as initial positions 
with respect to a single global reference frame (XOY). Each 
vehicle initializes its global map in this frame with zero initial 
position uncertainty and then, continues (through the 
unknown environment) observing the features and vehicles in 
its FOV. The relative observations and control data are shared 
between the vehicles; the shared features' observations are 
used with the vehicle-vehicle (v-v) observations to generate 
additional correlated observations, such as ba

b
ab

11 zzz


+=  in 
Fig.1, while the shared control data are used by each USV to 
estimate and update the second vehicle's location. The 
additional correlated observations are called extended 
observations (EO). Next subsection explains the details of the 
EO-CSLAM algorithm. 

 
 

 
 

Fig. 1: EO-CSLAM by two USVs (a, b), solid arrows refer to local 
observations (of features in the FOV) while dashed arrows refer to 

extended observations, such as ab
1z . 

 

2.1 EO-CSLAM algorithm formulation 
The main quantities and their used symbols are defined in [8] 
together with way of obtaining extened observations. 
Therefore, it is enough (for this paper’s goal) to review the 
main EKF recursive procedure. 

Initialization:      
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mapped yet ( =a
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0C ). In the following, 
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where a
pk 1−F and a

k 1−L are  the Jacobeans of motion model [9]:   

As control data v
k 1−u  are shared, and having ( +

−
b
k 1ŝ , +

−
b
k 1C ), the 

vehicle a  obtains −b
kŝ and −b

kC of b  using (2) and (3), so the v-

v observation a
bz  is distinguished via data association (being 

assigned to −b
kq̂ of −b

kŝ ), and the shared local observations v
ikz  

are used to obtain extended observations. See [8] for more 
details. 

For all these types of observation, data association is 
performed: for each observation associated with previous 
mapped feature, the innovation a

ikν  and its covariance ikE  are 
computed as follows: 
For local observations a

ikz : 
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For extended observations ab
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where sH ∂∂= ha
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while for each observation belongs to a new observed feature, 
the location estimate a

ikf̂  is computed as follows: 
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augmented, thus 
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and  +a
iikC   is computed for local observations using kR : 
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and so, the next period ( 1+k ) starts with (2) and (3) 
continuing with the same manner. 
 

2.2 Computational complexity 
It has been mentioned that the Constrained Local Submap 
Filter (CLSF), which is an effective method for reducing the 
computational burden in small-scale environment, will not be 
useful for USVs with long-range sensors such as radar where 
the difference between the local and global map will be small. 
Therefore, among the methods used for reducing the compu-
tational burden of SLAM algorithms, the state augmentation 
technique has been adopted in the EO-CSLAM algorithm, see 
(8) and (11 a,b); this technique reduces both the EKF predic-
tion step and the process of adding new feature from calcula-
tions with cubic complexity in the number of features to calcu-
lations that are linear [10]. However, due the decentralized 
manner of EO-CSLAM and performing the SLAM procedure 
in each vehicle for additional observations increases the com-
putational complexity of the algorithm. Section 3 compares the 
computational burden of EO-CSLAM with that of Mono-
SLAM and illustrates the features’ number effect on the per-
formance gain. 

3 SIMULATION RESULTS 
This section demonstrates (using simulation) the positive role 
of additional features and observations on the localization 
accuracy using SLAM, in addition to their negative effect on 
computational burden, and how will be their role in the im-
provement of EO-CSLAM approach. 

In order to perform SLAM algorithm simulation, we have 

designed a simple virtual marine environment so that allows 
inserting point features and pre-planned trajectories to be fol-
lowed by the USVs. Fig. 2 shows an example of 
a km10km10 × area with an arbitrary coast line and ten       
inserted features. The point features are assumed to be       
outputs of signal processing algorithms [3] and extraction  
routines that detect the point targets while suppress land   
reflections [4]. Two USVs ( a  and b ) were inserted and driv-
en along two closed trajectories of about 1.7 km-long. Dashed 
circles show the range/field-of-view FOV of each vehicle at 
the start time. The 5km-range of radar sensor was chosen 
agreeing with actual detection capability on the sea surface 
such as in [4]. 

 

 
Fig. 2:  A simple marine environment including two USVs (a and b) on two 

closed trajectories (zooming in on b at the start point) with 10 features. 
 
First, both Mono-SLAM and EO-CSLAM have been per-

formed for the case of Fig 2, but with 6 features rather than 10. 
Considering the norm of positional error covariance as a total 
criterion for SLAM performance, Fig. 3 illustrates a comparison of 
norms of position covariance in both cases, Mono-SLAM and EO-
CSLAM. It is   obvious that the uncertainty in the vehicle position 
estimate via EO-CSLAM decreases noticeably versus Mono-
SLAM. This improvement is due to the additional correlated fea-
ture estimates generated by each vehicle through the extended 
observation way. Fig. 3 shows also the improvement ratio ( IR ) 
for each USV, which represents the reduction in the uncertainty 
as a percentage of the Mono case, defined as 
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Fig. 3:  Comparison of two vehicles’ norm of covariance in Mono-SLAM 

case with EO-CALM, and the improvement ratio for 6-Feature case. 
 

Next, the process has been repeated for 10-feature case and 
40-feature case (Fig. 4). Fig. 5 illustrates the comparison for the 
10-feature case, and Fig. 6 illustrates the 40-feature case. 

Considering tha only the norm of vovariance and caomparing 
it between the three cases (6, 10, and 40 features), it can be seen 
that the increment in features number reduces the localization 
errors for both, Mono-SLAM and EO-CSLAM, and despite that 
EO-CSLAM is always better than Mono-SLAM, the performance 
gain will be higher for the less features case; notice that the im-
provement ratio (IR) has reached 50% for the 6-feature case, while 
for the 10- and 40-feature cases reached about 40% and 30%, 
respectively. Furthermore, due to the correlation between the 
vehicle postion eastimate and features locations estimates, the 
same effect and comparison will be satisfied for the mapping per-
formance. 

 

 
Fig. 4:  The same marine environment case with 40 features. 
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Fig. 5:  Comparison of two vehicles’ norm of covariance in Mono-SLAM 
case with EO-CALM, and the improvement ratio for 10-Feature case. 
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Fig. 6:  Comparison of two vehicles’ norm of covariance in Mono-SLAM 

case with EO-CALM, and the improvement ratio for 40-Feature case. 
 
 

On the other hand, in the purpose of evaluating the computa-
tional burden effect of the EO approach and its components, the 
running time elapsed (in MATLAB) for a single recursion period 
has been extracted for each method: Mono and EO-CSLAM. 

Fig. 7 shows this time for the vehicle b . As expected, the run-
ning time increases in the cooperative approaches where a great-
er amount of information is processed; while Mono-SLAM has 
the lowermost running time due to the least amount of shared 
data, EO-CSLAM takes longest time. Thus, since the increment in 
processed data in SLAM increases the computational burden, 
more features means longer computating time for both Mono-
SLAM and EO-CSLAM, and additionally, the longer computat-
ing time is the price of the performance gain obtained using EO-
CSLAM. 

 
 
 
  

 

 

 

a 

b 
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Fig. 7:  Running time elapsed (in MATLAB) for a single recursion period 

for the 10 features’ case and vehicle b . 

 
 

4 CONCLUSIONS 
This paper has explaind the role of features number in the 
performance gain of the extended observation-cooperative SLAM 
(EO-CSLAM). This role appears in two contradictory effects, a 
positive effect on the localization accuracy and mapping 
performaence (more features cause more accuracy for both Mono 
and EO-CSLAM), while the negative effect is the computational 
burden which incresea with the number of observed feature. 
While EO-CSLAM is always better than Mono-SLAM, the 
performance gain will be higher for the cases with less number of 
environment features. 
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